Last updated: 2019-01-01
workflowr checks: (Click a bullet for more information) ✔ R Markdown file: up-to-date
Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.
✔ Environment: empty
Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.
✔ Seed:
set.seed(20181026)
The command set.seed(20181026)
was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.
✔ Session information: recorded
Great job! Recording the operating system, R version, and package versions is critical for reproducibility.
✔ Repository version: b88a9ba
wflow_publish
or wflow_git_commit
). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:
Ignored files:
Ignored: analysis/figure/
Ignored: code/.ipynb_checkpoints/
Ignored: output/10x-180504
Ignored: output/10x-180504-aligned
Ignored: output/10x-180504-aligned-metageneplot
Ignored: output/10x-180504-beforeQC
Ignored: output/10x-180504-beforeqc
Ignored: output/10x-180504-cca-discardedcells
Ignored: output/10x-180504-ccregout
Ignored: output/10x-180504-ccregout-aligned
Ignored: output/10x-180504-ccregout-cca-discardedcells
Ignored: output/10x-180831
Ignored: output/10x-180831-T1T2T3
Ignored: output/10x-180831-T4T5
Ignored: output/10x-180831-beforeqc
Ignored: output/10x-180831-notcleaned
Ignored: output/monocle/
Untracked files:
Untracked: analysis/.ipynb_checkpoints/
Untracked: analysis/10x-180504-mixture-cluster.Rmd
Untracked: analysis/10x-180504-scmap.Rmd
Untracked: analysis/velocyto_notebook_180504-Copy1.ipynb
Untracked: analysis/velocyto_notebook_180504.ipynb
Untracked: code/velocyto_preprocess.py
Untracked: code/velocyto_workflow.py
Untracked: output/velocyto/
Untracked: plots/180504_velocyto_phase.pdf
Untracked: plots/180504_velocyto_phase_legend.pdf
Untracked: plots/180504_velocyto_samplename.pdf
Untracked: plots/180504_velocyto_samplename_legend.pdf
Untracked: plots/supplementary_figures/sfig_180504_genes_monocle_high_dispersion.pdf
Untracked: tables/10x-180504-downsampled36-metadata.txt
Unstaged changes:
Modified: analysis/10x-180504-DEGs-depots.Rmd
Modified: analysis/10x-180504-depot-markers.Rmd
Modified: plots/180504_mixture.pdf
Modified: plots/180504_monocle_noreg-ccreg.pdf
Modified: plots/180504_pca_tsne.pdf
Modified: plots/supplementary_figures/sfig_180504_monocle.pdf
Modified: plots/supplementary_figures/sfig_180504_pcelbow.pdf
Modified: plots/supplementary_figures/sfig_180504_qcplots.pdf
Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
File | Version | Author | Date | Message |
---|---|---|---|---|
Rmd | b88a9ba | PytrikFolkertsma | 2019-01-01 | wflow_publish(c(“analysis/10x-180504-monocle.Rmd”, “analysis/index.Rmd”)) |
html | 6e36947 | PytrikFolkertsma | 2018-11-07 | Build site. |
Rmd | 1c178af | PytrikFolkertsma | 2018-11-07 | wflow_publish(c(“analysis/10x-180504-alignment.Rmd”, “analysis/10x-180504-beforeQC.Rmd”, |
html | 3b4a19e | PytrikFolkertsma | 2018-11-07 | Build site. |
Rmd | 039a705 | PytrikFolkertsma | 2018-11-06 | monocle |
Notebook for Monocle trajectories of the 180504 dataset.
To investigate the robustness of the trajectories, the dataset was randomly downsampled on 1000 cells per sample. 4 different types of regressions were used when running the DDRTree algorithm.
library(Seurat)
library(monocle)
Loading all datasets.
cds.11 <- readRDS('output/monocle/180504/10x-180504-monocle-11')
cds.cc.11 <- readRDS('output/monocle/180504/10x-180504-monocle-cc-11')
cds.pm.umi.11 <- readRDS('output/monocle/180504/10x-180504-monocle-pm-umi-11')
cds.pm.umi.cc.11 <- readRDS('output/monocle/180504/10x-180504-monocle-pm-umi-cc-11')
cds.27 <- readRDS('output/monocle/180504/10x-180504-monocle-27')
cds.cc.27 <- readRDS('output/monocle/180504/10x-180504-monocle-cc-27')
cds.pm.umi.27 <- readRDS('output/monocle/180504/10x-180504-monocle-pm-umi-27')
cds.pm.umi.cc.27 <- readRDS('output/monocle/180504/10x-180504-monocle-pm-umi-cc-27')
cds.33 <- readRDS('output/monocle/180504/10x-180504-monocle-33')
cds.cc.33 <- readRDS('output/monocle/180504/10x-180504-monocle-cc-33')
cds.pm.umi.33 <- readRDS('output/monocle/180504/10x-180504-monocle-pm-umi-33')
cds.pm.umi.cc.33 <- readRDS('output/monocle/180504/10x-180504-monocle-pm-umi-cc-33')
cds.53 <- readRDS('output/monocle/180504/10x-180504-monocle-53')
cds.cc.53 <- readRDS('output/monocle/180504/10x-180504-monocle-cc-53')
cds.pm.umi.53 <- readRDS('output/monocle/180504/10x-180504-monocle-pm-umi-53')
cds.pm.umi.cc.53 <- readRDS('output/monocle/180504/10x-180504-monocle-pm-umi-cc-53')
Genes with the highest dispersion were used for ordering
plot_ordering_genes(cds.11)
Warning: Transformation introduced infinite values in continuous y-axis
Trajectories of one subset, coloured by depot and cell cycle phase. Topleft: no regression. Topright: cell cycle regression. Bottom left: percent.mito + nUMI regression. Bottom right: percent.mito + nUMI + cell cycle regression.
plot_grid(
plot_cell_trajectory(cds.11, color_by='depot'),
plot_cell_trajectory(cds.cc.11, color_by='depot'),
plot_cell_trajectory(cds.pm.umi.11, color_by='depot'),
plot_cell_trajectory(cds.pm.umi.cc.11, color_by='depot'),
nrow=2)
Version | Author | Date |
---|---|---|
3b4a19e | PytrikFolkertsma | 2018-11-07 |
plot_grid(
plot_cell_trajectory(cds.11, color_by='Phase'),
plot_cell_trajectory(cds.cc.11, color_by='Phase'),
plot_cell_trajectory(cds.pm.umi.11, color_by='Phase'),
plot_cell_trajectory(cds.pm.umi.cc.11, color_by='Phase'),
nrow=2)
Version | Author | Date |
---|---|---|
3b4a19e | PytrikFolkertsma | 2018-11-07 |
Trajectories of the 4 subsets with no variables regressed out. The ordering of the cells seems to be influenced by the cell cycle state (though not completely). Interestingly in three of the trajectories there is a branch split.
plot_grid(
plot_cell_trajectory(cds.11, color_by='Phase'),
plot_cell_trajectory(cds.27, color_by='Phase'),
plot_cell_trajectory(cds.33, color_by='Phase'),
plot_cell_trajectory(cds.53, color_by='Phase'),
nrow=2)
Version | Author | Date |
---|---|---|
3b4a19e | PytrikFolkertsma | 2018-11-07 |
Does the branch split discriminate between depots?
plot_grid(
plot_cell_trajectory(cds.11, color_by='depot'),
plot_cell_trajectory(cds.27, color_by='depot'),
plot_cell_trajectory(cds.33, color_by='depot'),
plot_cell_trajectory(cds.53, color_by='depot'),
nrow=2)
Version | Author | Date |
---|---|---|
3b4a19e | PytrikFolkertsma | 2018-11-07 |
Trajectories of the 4 subsets with cell cycle effects regressed out. Topleft, bottom left and bottom right look similar but all have different number of branching points.
plot_grid(
plot_cell_trajectory(cds.cc.11, color_by='Phase'),
plot_cell_trajectory(cds.cc.27, color_by='Phase'),
plot_cell_trajectory(cds.cc.33, color_by='Phase'),
plot_cell_trajectory(cds.cc.53, color_by='Phase'),
nrow=2)
Version | Author | Date |
---|---|---|
3b4a19e | PytrikFolkertsma | 2018-11-07 |
Coloured on depot. Branches do not
plot_grid(
plot_cell_trajectory(cds.cc.11, color_by='depot'),
plot_cell_trajectory(cds.cc.27, color_by='depot'),
plot_cell_trajectory(cds.cc.33, color_by='depot'),
plot_cell_trajectory(cds.cc.53, color_by='depot'),
nrow=2)
Version | Author | Date |
---|---|---|
3b4a19e | PytrikFolkertsma | 2018-11-07 |
In general all cells seem to follow one direction, and the general shape of the trajectories are similar. The branch splits in the trajectories above (no regression and cell cycle regression) could be the effects of differences in percent.mito and nUMI, and that’s why we don’t see that here.
plot_grid(
plot_cell_trajectory(cds.pm.umi.11, color_by='Phase'),
plot_cell_trajectory(cds.pm.umi.27, color_by='Phase'),
plot_cell_trajectory(cds.pm.umi.33, color_by='Phase'),
plot_cell_trajectory(cds.pm.umi.53, color_by='Phase'),
nrow=2)
Version | Author | Date |
---|---|---|
3b4a19e | PytrikFolkertsma | 2018-11-07 |
Trajectories with percent.mito, nUMI and cell cycle effects regressed out. Doesn’t look very convincing.
plot_grid(
plot_cell_trajectory(cds.pm.umi.cc.11, color_by='depot'),
plot_cell_trajectory(cds.pm.umi.cc.27, color_by='depot'),
plot_cell_trajectory(cds.pm.umi.cc.33, color_by='depot'),
plot_cell_trajectory(cds.pm.umi.cc.53, color_by='depot'),
nrow=2)
Version | Author | Date |
---|---|---|
3b4a19e | PytrikFolkertsma | 2018-11-07 |
fig <- plot_grid(
plot_cell_trajectory(cds.11, color_by='Phase'),
plot_cell_trajectory(cds.cc.11, color_by='depot'),
nrow=1, labels='auto')
save_plot("plots/180504_monocle_noreg-ccreg.pdf", fig, base_width=12, base_height=5)
fig
Version | Author | Date |
---|---|---|
3b4a19e | PytrikFolkertsma | 2018-11-07 |
noreg <- plot_grid(
plot_cell_trajectory(cds.11, color_by='Phase', cell_size = 0.5),
plot_cell_trajectory(cds.27, color_by='Phase', cell_size = 0.5),
plot_cell_trajectory(cds.33, color_by='Phase', cell_size = 0.5),
plot_cell_trajectory(cds.53, color_by='Phase', cell_size = 0.5),
nrow=1)
ccreg <- plot_grid(
plot_cell_trajectory(cds.cc.11, color_by='Phase', cell_size = 0.5),
plot_cell_trajectory(cds.cc.27, color_by='Phase', cell_size = 0.5),
plot_cell_trajectory(cds.cc.33, color_by='Phase', cell_size = 0.5),
plot_cell_trajectory(cds.cc.53, color_by='Phase', cell_size = 0.5),
nrow=1)
pmumireg <- plot_grid(
plot_cell_trajectory(cds.pm.umi.11, color_by='Phase', cell_size = 0.5),
plot_cell_trajectory(cds.pm.umi.27, color_by='Phase', cell_size = 0.5),
plot_cell_trajectory(cds.pm.umi.33, color_by='Phase', cell_size = 0.5),
plot_cell_trajectory(cds.pm.umi.53, color_by='Phase', cell_size = 0.5),
nrow=1)
pmumiccreg <- plot_grid(
plot_cell_trajectory(cds.pm.umi.cc.11, color_by='Phase', cell_size = 0.5),
plot_cell_trajectory(cds.pm.umi.cc.27, color_by='Phase', cell_size = 0.5),
plot_cell_trajectory(cds.pm.umi.cc.33, color_by='Phase', cell_size = 0.5),
plot_cell_trajectory(cds.pm.umi.cc.53, color_by='Phase', cell_size = 0.5),
nrow=1)
sfig <- plot_grid(
noreg,
ccreg,
pmumireg,
pmumiccreg,
labels='auto', nrow=4
)
save_plot("plots/supplementary_figures/sfig_180504_monocle.pdf", sfig, base_width=12, base_height=12)
sfig
Version | Author | Date |
---|---|---|
3b4a19e | PytrikFolkertsma | 2018-11-07 |
sfig2 <- plot_ordering_genes(cds.11)
save_plot("plots/supplementary_figures/sfig_180504_genes_monocle_high_dispersion.pdf", sfig2, base_width=6, base_height=4)
Warning: Transformation introduced infinite values in continuous y-axis
sfig2
Warning: Transformation introduced infinite values in continuous y-axis
sessionInfo()
R version 3.4.3 (2017-11-30)
Platform: x86_64-redhat-linux-gnu (64-bit)
Running under: Storage
Matrix products: default
BLAS/LAPACK: /usr/lib64/R/lib/libRblas.so
locale:
[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
[3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8
[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
[7] LC_PAPER=en_US.UTF-8 LC_NAME=C
[9] LC_ADDRESS=C LC_TELEPHONE=C
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
attached base packages:
[1] splines stats4 parallel stats graphics grDevices utils
[8] datasets methods base
other attached packages:
[1] monocle_2.6.4 DDRTree_0.1.5 irlba_2.3.2
[4] VGAM_1.0-6 Biobase_2.38.0 BiocGenerics_0.24.0
[7] Seurat_2.3.4 Matrix_1.2-14 cowplot_0.9.3
[10] ggplot2_3.0.0
loaded via a namespace (and not attached):
[1] Rtsne_0.13 colorspace_1.3-2 class_7.3-14
[4] modeltools_0.2-22 ggridges_0.5.0 mclust_5.4.1
[7] rprojroot_1.3-2 htmlTable_1.12 base64enc_0.1-3
[10] rstudioapi_0.7 proxy_0.4-22 ggrepel_0.8.0
[13] flexmix_2.3-14 bit64_0.9-7 mvtnorm_1.0-8
[16] codetools_0.2-15 R.methodsS3_1.7.1 docopt_0.6
[19] robustbase_0.93-2 knitr_1.20 Formula_1.2-3
[22] jsonlite_1.5 workflowr_1.1.1 ica_1.0-2
[25] cluster_2.0.7-1 kernlab_0.9-27 png_0.1-7
[28] R.oo_1.22.0 pheatmap_1.0.10 compiler_3.4.3
[31] httr_1.3.1 backports_1.1.2 assertthat_0.2.0
[34] lazyeval_0.2.1 limma_3.34.9 lars_1.2
[37] acepack_1.4.1 htmltools_0.3.6 tools_3.4.3
[40] bindrcpp_0.2.2 igraph_1.2.2 gtable_0.2.0
[43] glue_1.3.0 RANN_2.6 reshape2_1.4.3
[46] dplyr_0.7.6 Rcpp_0.12.18 slam_0.1-43
[49] trimcluster_0.1-2.1 gdata_2.18.0 ape_5.1
[52] nlme_3.1-137 iterators_1.0.10 fpc_2.1-11.1
[55] gbRd_0.4-11 lmtest_0.9-36 stringr_1.3.1
[58] gtools_3.8.1 DEoptimR_1.0-8 MASS_7.3-50
[61] zoo_1.8-3 scales_1.0.0 doSNOW_1.0.16
[64] RColorBrewer_1.1-2 yaml_2.2.0 reticulate_1.10
[67] pbapply_1.3-4 gridExtra_2.3 rpart_4.1-13
[70] segmented_0.5-3.0 fastICA_1.2-1 latticeExtra_0.6-28
[73] stringi_1.2.4 foreach_1.4.4 checkmate_1.8.5
[76] caTools_1.17.1.1 densityClust_0.3 bibtex_0.4.2
[79] matrixStats_0.54.0 Rdpack_0.9-0 SDMTools_1.1-221
[82] rlang_0.2.2 pkgconfig_2.0.2 dtw_1.20-1
[85] prabclus_2.2-6 bitops_1.0-6 qlcMatrix_0.9.7
[88] evaluate_0.11 lattice_0.20-35 ROCR_1.0-7
[91] purrr_0.2.5 bindr_0.1.1 labeling_0.3
[94] htmlwidgets_1.2 bit_1.1-14 tidyselect_0.2.4
[97] plyr_1.8.4 magrittr_1.5 R6_2.2.2
[100] snow_0.4-2 gplots_3.0.1 Hmisc_4.1-1
[103] combinat_0.0-8 pillar_1.3.0 whisker_0.3-2
[106] foreign_0.8-71 withr_2.1.2 fitdistrplus_1.0-9
[109] mixtools_1.1.0 survival_2.42-6 nnet_7.3-12
[112] tsne_0.1-3 tibble_1.4.2 crayon_1.3.4
[115] hdf5r_1.0.0 KernSmooth_2.23-15 rmarkdown_1.10
[118] viridis_0.5.1 grid_3.4.3 data.table_1.11.4
[121] FNN_1.1.2.1 git2r_0.23.0 sparsesvd_0.1-4
[124] HSMMSingleCell_0.112.0 metap_1.0 digest_0.6.16
[127] diptest_0.75-7 tidyr_0.8.1 R.utils_2.7.0
[130] munsell_0.5.0 viridisLite_0.3.0
This reproducible R Markdown analysis was created with workflowr 1.1.1