Last updated: 2019-01-01
workflowr checks: (Click a bullet for more information) ✔ R Markdown file: up-to-date
Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.
✔ Environment: empty
Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.
✔ Seed:
set.seed(20181026)
The command set.seed(20181026)
was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.
✔ Session information: recorded
Great job! Recording the operating system, R version, and package versions is critical for reproducibility.
✔ Repository version: a7860ef
wflow_publish
or wflow_git_commit
). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:
Ignored files:
Ignored: code/.ipynb_checkpoints/
Ignored: output/10x-180504
Ignored: output/10x-180504-aligned
Ignored: output/10x-180504-aligned-metageneplot
Ignored: output/10x-180504-beforeQC
Ignored: output/10x-180504-beforeqc
Ignored: output/10x-180504-cca-discardedcells
Ignored: output/10x-180504-ccregout
Ignored: output/10x-180504-ccregout-aligned
Ignored: output/10x-180504-ccregout-cca-discardedcells
Ignored: output/10x-180831
Ignored: output/10x-180831-T1T2T3
Ignored: output/10x-180831-T4T5
Ignored: output/10x-180831-beforeqc
Ignored: output/10x-180831-notcleaned
Ignored: output/monocle/
Untracked files:
Untracked: tables/10x-180504-scmap-numbers
Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
library(Seurat)
Loading required package: ggplot2
Loading required package: cowplot
Attaching package: 'cowplot'
The following object is masked from 'package:ggplot2':
ggsave
Loading required package: Matrix
library(scmap)
Creating a generic function for 'toJSON' from package 'jsonlite' in package 'googleVis'
library(SingleCellExperiment)
Loading required package: SummarizedExperiment
Loading required package: GenomicRanges
Loading required package: stats4
Loading required package: BiocGenerics
Loading required package: parallel
Attaching package: 'BiocGenerics'
The following objects are masked from 'package:parallel':
clusterApply, clusterApplyLB, clusterCall, clusterEvalQ,
clusterExport, clusterMap, parApply, parCapply, parLapply,
parLapplyLB, parRapply, parSapply, parSapplyLB
The following objects are masked from 'package:Matrix':
colMeans, colSums, rowMeans, rowSums, which
The following objects are masked from 'package:stats':
IQR, mad, sd, var, xtabs
The following objects are masked from 'package:base':
anyDuplicated, append, as.data.frame, cbind, colMeans,
colnames, colSums, do.call, duplicated, eval, evalq, Filter,
Find, get, grep, grepl, intersect, is.unsorted, lapply,
lengths, Map, mapply, match, mget, order, paste, pmax,
pmax.int, pmin, pmin.int, Position, rank, rbind, Reduce,
rowMeans, rownames, rowSums, sapply, setdiff, sort, table,
tapply, union, unique, unsplit, which, which.max, which.min
Loading required package: S4Vectors
Attaching package: 'S4Vectors'
The following object is masked from 'package:Matrix':
expand
The following object is masked from 'package:base':
expand.grid
Loading required package: IRanges
Loading required package: GenomeInfoDb
Loading required package: Biobase
Welcome to Bioconductor
Vignettes contain introductory material; view with
'browseVignettes()'. To cite Bioconductor, see
'citation("Biobase")', and for packages 'citation("pkgname")'.
Loading required package: DelayedArray
Loading required package: matrixStats
Attaching package: 'matrixStats'
The following objects are masked from 'package:Biobase':
anyMissing, rowMedians
Attaching package: 'DelayedArray'
The following objects are masked from 'package:matrixStats':
colMaxs, colMins, colRanges, rowMaxs, rowMins, rowRanges
The following object is masked from 'package:base':
apply
library(dplyr)
Attaching package: 'dplyr'
The following object is masked from 'package:matrixStats':
count
The following object is masked from 'package:Biobase':
combine
The following objects are masked from 'package:GenomicRanges':
intersect, setdiff, union
The following object is masked from 'package:GenomeInfoDb':
intersect
The following objects are masked from 'package:IRanges':
collapse, desc, intersect, setdiff, slice, union
The following objects are masked from 'package:S4Vectors':
first, intersect, rename, setdiff, setequal, union
The following objects are masked from 'package:BiocGenerics':
combine, intersect, setdiff, union
The following objects are masked from 'package:stats':
filter, lag
The following objects are masked from 'package:base':
intersect, setdiff, setequal, union
Data loading and inspection of the metadata.
load('/data/pub-others/tabula_muris/figshare/180126-facs/maca.seurat_obj.facs.figshare_180126.RData')
head(seurat_obj@meta.data)
nGene nUMI orig.ident cell
A12.D041914.3_8_M.1.1 4712 1221663 SeuratProject A12.D041914.3_8_M.1.1
B16.D041914.3_8_M.1.1 3652 1837897 SeuratProject B16.D041914.3_8_M.1.1
C18.D041914.3_8_M.1.1 6220 1703523 SeuratProject C18.D041914.3_8_M.1.1
D22.D041914.3_8_M.1.1 5322 949162 SeuratProject D22.D041914.3_8_M.1.1
F4.D041914.3_8_M.1.1 3036 59975 SeuratProject F4.D041914.3_8_M.1.1
C19.D041914.3_8_M.1.1 5350 808935 SeuratProject C19.D041914.3_8_M.1.1
tissue cell_ontology_class cell_ontology_id
A12.D041914.3_8_M.1.1 Bladder mesenchymal cell CL:0008019
B16.D041914.3_8_M.1.1 Bladder bladder cell CL:1001319
C18.D041914.3_8_M.1.1 Bladder bladder cell CL:1001319
D22.D041914.3_8_M.1.1 Bladder bladder cell CL:1001319
F4.D041914.3_8_M.1.1 Bladder mesenchymal cell CL:0008019
C19.D041914.3_8_M.1.1 Bladder bladder cell CL:1001319
tissue_cell_type
A12.D041914.3_8_M.1.1 Bladder_mesenchymal cell
B16.D041914.3_8_M.1.1 Bladder_bladder cell
C18.D041914.3_8_M.1.1 Bladder_bladder cell
D22.D041914.3_8_M.1.1 Bladder_bladder cell
F4.D041914.3_8_M.1.1 Bladder_mesenchymal cell
C19.D041914.3_8_M.1.1 Bladder_bladder cell
sce_maca <- as.SingleCellExperiment(seurat_obj)
all10x <- readRDS('output/10x-180504')
sce_10x <- as.SingleCellExperiment(all10x)
#convert maca gene names to uppercase to match 10x gene names
rowData(sce_maca)['feature_symbol'] <- unlist(lapply(rowData(sce_maca)$gene, function(x){return(toupper(x))}))
rowData(sce_10x)['feature_symbol'] <- rowData(sce_10x)$gene
counts(sce_10x) <- as.matrix(counts(sce_10x))
logcounts(sce_10x) <- as.matrix(logcounts(sce_10x))
counts(sce_maca) <- as.matrix(counts(sce_maca))
logcounts(sce_maca) <- as.matrix(logcounts(sce_maca))
sce_maca <- selectFeatures(sce_maca, suppress_plot = FALSE)
Celltypes in the fat dataset
seurat_obj@meta.data %>% filter(tissue=="Fat") %>% distinct(tissue_cell_type)
tissue_cell_type
1 Fat_myeloid cell
2 Fat_T cell
3 Fat_B cell
4 Fat_granulocyte
5 Fat_mesenchymal stem cell of adipose
6 Fat_endothelial cell
7 Fat_natural killer cell
8 Fat_epithelial cell
9 Fat_neutrophil
10 Fat_smooth muscle cell
Subsetting and preparing the data.
maca_fat <- SubsetData(SetAllIdent(seurat_obj, id='tissue'), ident.use="Fat")
sce_maca_fat <- as.SingleCellExperiment(maca_fat)
rowData(sce_maca_fat)['feature_symbol'] <- unlist(lapply(rowData(sce_maca_fat)$gene, function(x){return(toupper(x))}))
counts(sce_maca_fat) <- as.matrix(counts(sce_maca_fat))
logcounts(sce_maca_fat) <- as.matrix(logcounts(sce_maca_fat))
sce_maca_fat <- selectFeatures(sce_maca_fat, suppress_plot = FALSE)
Setting the right column for clustering.
sce_maca_fat <- indexCluster(sce_maca_fat, cluster_col = 'cell_ontology_class')
Predicting cell types in our dataset.
scmapCluster_results_fat <- scmapCluster(
projection = sce_10x,
index_list = list(
sce_maca_fat = metadata(sce_maca_fat)$scmap_cluster_index
),
threshold=0.5 #default=0.7
)
Warning in setFeatures(projection, rownames(index)): Features
1190002H23RIK, 8430408G22RIK, ADH1, AW112010, C1RA, C4B, CAR4, CCL6,
CCL9, CCR2, CD2, CD24A, CD48, CD53, CXCR7, CYB5, CYBB, CYP4B1, CYP4F18,
ERCC-00009, ERCC-00108, F13A1, FCGR2B, FCGR3, GIMAP3, GIMAP6, GM11428,
GPIHBP1, H2-AA, H2-AB1, H2-D1, H2-DMA, H2-DMB1, H2-DMB2, H2-EB1, H2-K1, H2-
OB, H2-Q6, HMGCS2, IFI205, IFI27L2A, IL11RA1, LILRB4, LRRC33, LY6A, LY6C1,
LY86, LYZ2, MGL2, MMP23, MRC1, MS4A1, MS4A4B, MS4A4C, MS4A4D, MS4A6B,
MS4A6C, MT1, NEURL3, PECAM1, PGCP, RETNLA, SERPINB6A, SFPI1, SLFN2, SPNB2,
TPRGL, TRF are not present in the 'SCESet' object and therefore were not
set.
Number of predictions for each annotation for the whole dataset and for the mixture cluster.
pred_fat <- as.data.frame(table(scmapCluster_results_fat$scmap_cluster_labs))
pred_fat <- pred_fat[order(-pred_fat$Freq),]
pred_mixt_fat <- as.data.frame(table(scmapCluster_results_fat$scmap_cluster_labs[which(colData(sce_10x)$res.0.5 %in% 12), 'sce_maca_fat']))
scmap_nr_predictions <- merge(pred_fat, pred_mixt_fat, by='Var1', suffixes=c('.total', '.mixture'))
scmap_nr_predictions
Var1 Freq.total Freq.mixture
1 epithelial cell 861 723
2 mesenchymal stem cell of adipose 43909 78
3 smooth muscle cell 749 18
4 unassigned 10852 320
Interestingly, a lot of epithelial cell predictions in the mixture cluster and not that much mesenchymal stem cell predictions.
predicted_labels_fat <- as.data.frame(
row.names=rownames(sce_10x@colData),
x=as.vector(scmapCluster_results_fat$scmap_cluster_labs))
names(predicted_labels_fat) <- 'predicted_labels_fat'
all10x <- AddMetaData(all10x, metadata=predicted_labels_fat, col.name='predicted_labels_fat')
t1 <- TSNEPlot(all10x, group.by='predicted_labels_fat', pt.size=0.1)
save_plot("/projects/pytrik/sc_adipose/analyze_10x_fluidigm/data/plots_slides/scmap.pdf", t1, base_width=8, base_height = 5)
TSNEPlot(all10x, group.by='sample_name', pt.size=0.1, do.label=T)
#saveRDS(all10x, 'output/10x-180504')
write.table(scmap_nr_predictions, 'tables/10x-180504-scmap-numbers')
sessionInfo()
R version 3.4.3 (2017-11-30)
Platform: x86_64-redhat-linux-gnu (64-bit)
Running under: Storage
Matrix products: default
BLAS/LAPACK: /usr/lib64/R/lib/libRblas.so
locale:
[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
[3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8
[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
[7] LC_PAPER=en_US.UTF-8 LC_NAME=C
[9] LC_ADDRESS=C LC_TELEPHONE=C
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
attached base packages:
[1] parallel stats4 stats graphics grDevices utils datasets
[8] methods base
other attached packages:
[1] bindrcpp_0.2.2 dplyr_0.7.6
[3] SingleCellExperiment_1.0.0 SummarizedExperiment_1.8.1
[5] DelayedArray_0.4.1 matrixStats_0.54.0
[7] Biobase_2.38.0 GenomicRanges_1.30.3
[9] GenomeInfoDb_1.14.0 IRanges_2.12.0
[11] S4Vectors_0.16.0 BiocGenerics_0.24.0
[13] scmap_1.1.5 Seurat_2.3.4
[15] Matrix_1.2-14 cowplot_0.9.3
[17] ggplot2_3.0.0
loaded via a namespace (and not attached):
[1] Rtsne_0.13 colorspace_1.3-2 class_7.3-14
[4] modeltools_0.2-22 ggridges_0.5.0 mclust_5.4.1
[7] rprojroot_1.3-2 htmlTable_1.12 XVector_0.18.0
[10] base64enc_0.1-3 rstudioapi_0.7 proxy_0.4-22
[13] flexmix_2.3-14 bit64_0.9-7 mvtnorm_1.0-8
[16] codetools_0.2-15 splines_3.4.3 R.methodsS3_1.7.1
[19] robustbase_0.93-2 knitr_1.20 Formula_1.2-3
[22] jsonlite_1.5 workflowr_1.1.1 ica_1.0-2
[25] cluster_2.0.7-1 kernlab_0.9-27 png_0.1-7
[28] R.oo_1.22.0 compiler_3.4.3 httr_1.3.1
[31] googleVis_0.6.2 backports_1.1.2 assertthat_0.2.0
[34] lazyeval_0.2.1 lars_1.2 acepack_1.4.1
[37] htmltools_0.3.6 tools_3.4.3 igraph_1.2.2
[40] GenomeInfoDbData_1.0.0 gtable_0.2.0 glue_1.3.0
[43] RANN_2.6 reshape2_1.4.3 Rcpp_0.12.18
[46] trimcluster_0.1-2.1 gdata_2.18.0 ape_5.1
[49] nlme_3.1-137 iterators_1.0.10 fpc_2.1-11.1
[52] gbRd_0.4-11 lmtest_0.9-36 stringr_1.3.1
[55] irlba_2.3.2 gtools_3.8.1 DEoptimR_1.0-8
[58] zlibbioc_1.24.0 MASS_7.3-50 zoo_1.8-3
[61] scales_1.0.0 doSNOW_1.0.16 RColorBrewer_1.1-2
[64] yaml_2.2.0 reticulate_1.10 pbapply_1.3-4
[67] gridExtra_2.3 rpart_4.1-13 segmented_0.5-3.0
[70] latticeExtra_0.6-28 stringi_1.2.4 randomForest_4.6-14
[73] foreach_1.4.4 e1071_1.7-0 checkmate_1.8.5
[76] caTools_1.17.1.1 bibtex_0.4.2 Rdpack_0.9-0
[79] SDMTools_1.1-221 rlang_0.2.2 pkgconfig_2.0.2
[82] dtw_1.20-1 prabclus_2.2-6 bitops_1.0-6
[85] evaluate_0.11 lattice_0.20-35 ROCR_1.0-7
[88] purrr_0.2.5 bindr_0.1.1 labeling_0.3
[91] htmlwidgets_1.2 bit_1.1-14 tidyselect_0.2.4
[94] plyr_1.8.4 magrittr_1.5 R6_2.2.2
[97] snow_0.4-2 gplots_3.0.1 Hmisc_4.1-1
[100] pillar_1.3.0 whisker_0.3-2 foreign_0.8-71
[103] withr_2.1.2 fitdistrplus_1.0-9 mixtools_1.1.0
[106] RCurl_1.95-4.11 survival_2.42-6 nnet_7.3-12
[109] tsne_0.1-3 tibble_1.4.2 crayon_1.3.4
[112] hdf5r_1.0.0 KernSmooth_2.23-15 rmarkdown_1.10
[115] grid_3.4.3 data.table_1.11.4 git2r_0.23.0
[118] metap_1.0 digest_0.6.16 diptest_0.75-7
[121] tidyr_0.8.1 R.utils_2.7.0 munsell_0.5.0
This reproducible R Markdown analysis was created with workflowr 1.1.1