Last updated: 2019-05-13

Checks: 6 0

Knit directory: 10x-adipocyte-analysis/

This reproducible R Markdown analysis was created with workflowr (version 1.2.0). The Report tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20181026) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility. The version displayed above was the version of the Git repository at the time these results were generated.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    figures/
    Ignored:    output/bulk_analysis/
    Ignored:    output/demuxlet/
    Ignored:    output/markergenes/
    Ignored:    output/monocle/
    Ignored:    output/seurat_objects/
    Ignored:    output/velocyto/
    Ignored:    output/wgcna/
    Ignored:    tables/

Untracked files:
    Untracked:  .rstudio_old10/
    Untracked:  10x-adipocyte-analysis-copy.Rproj
    Untracked:  analysis/.ipynb_checkpoints/velocyto_notebook_180831-checkpoint.ipynb
    Untracked:  analysis/10-180831-monocle-per-depot.Rmd
    Untracked:  analysis/10x-180831-BEAM-heatmap.Rmd
    Untracked:  code/BEAM-heatmaps.R
    Untracked:  code/BEAM_gsea.R
    Untracked:  code/colors.R

Unstaged changes:
    Deleted:    10x-adipocyte-analysis.Rproj
    Modified:   analysis/10x-180504-DEGs-depots.Rmd
    Modified:   analysis/10x-180504-alignment.Rmd
    Modified:   analysis/10x-180504-depot-markers.Rmd
    Modified:   analysis/10x-180831-BATLAS.Rmd
    Modified:   analysis/10x-180831-TF_analysis.Rmd
    Modified:   analysis/10x-180831-beamGOplot.Rmd
    Modified:   analysis/10x-180831-colors.Rmd
    Modified:   analysis/10x-180831-demuxlet.Rmd
    Modified:   analysis/10x-180831-figures.Rmd
    Modified:   analysis/10x-180831-general-analysis.Rmd
    Modified:   analysis/10x-180831-monocle.Rmd
    Modified:   analysis/10x-180831-supplementary_figures.Rmd
    Modified:   analysis/index.Rmd
    Modified:   analysis/velocyto_notebook_180504.ipynb
    Modified:   analysis/velocyto_notebook_180831.ipynb
    Deleted:    code/REMOVE/find-brown-sample-markers-180504-REMOVE.R
    Deleted:    code/REMOVE/find-white-sample-markers-180504-REMOVE.R
    Deleted:    code/REMOVE/get-genes-monocle-180831-REMOVE.R
    Modified:   code/compute-genelists-monocle-depots.R
    Modified:   code/find-depot-markers-180504.R
    Modified:   code/find-markers.R
    Modified:   code/preprocess-data.R
    Modified:   code/run-monocle.R
    Modified:   code/velocyto_preprocess.py

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the R Markdown and HTML files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view them.

File Version Author Date Message
Rmd 79c83f6 Pytrik Folkertsma 2019-05-13 Monocle feature selection
html 4145fdd Pytrik Folkertsma 2019-05-13 Build site.
Rmd 4556d76 Pytrik Folkertsma 2019-05-13 Monocle feature selection
html 6030229 Pytrik Folkertsma 2019-04-03 Build site.
Rmd 5db5600 Pytrik Folkertsma 2019-04-03 updated with new trajectory plot
html 4d2bbec Pytrik Folkertsma 2019-03-29 Build site.
Rmd ad8fa06 Pytrik Folkertsma 2019-03-29 monocle feature selection notebook

This notebook shows the results of different feature selection methods of Monocle.

library(monocle)
library(cowplot)

Genes with high dispersion

cds_high_disp <- readRDS('output/monocle/180831/monocle_high_dispersion/10x-180831-monocle')
plot_cell_trajectory(cds_high_disp, color_by = 'timepoint')

Version Author Date
4d2bbec Pytrik Folkertsma 2019-03-29

DE genes between T1T2T3 and T4T5

cds_timecombined <- readRDS('output/monocle/180831/monocle_time-combined/10x-180831-monocle')
plot_cell_trajectory(cds_timecombined, color_by='timepoint')

Version Author Date
4d2bbec Pytrik Folkertsma 2019-03-29

DE genes from cluster resolution 1.5

cds_res1.5 <- readRDS('output/monocle/180831/monocle_res1.5/10x-180831-monocle')
plot_cell_trajectory(cds_res1.5, color_by='timepoint')

Version Author Date
4d2bbec Pytrik Folkertsma 2019-03-29

Dataset split into T1+T2+T3 and T4+T5, DE genes from clusters res0.5.

cds_split_res0.5 <- readRDS('output/monocle/180831/monocle_T1T2T3_T4T5_res0.5/10x-180831-noreg-monocle')
plot_cell_trajectory(cds_split_res0.5, color_by='timepoint')

Version Author Date
4d2bbec Pytrik Folkertsma 2019-03-29

Dataset split into T1+T2+T3 and T4+T5, DE genes from clusters res1.5 are used here.

cds <- readRDS('output/monocle/180831/monocle_T1T2T3_T4T5_res1.5/10x-180831-monocle')
plot_cell_trajectory(cds, color_by='timepoint')

Version Author Date
4d2bbec Pytrik Folkertsma 2019-03-29

With doublets removed (used for all further analyses).

cds <- readRDS('output/monocle/180831/10x-180831-monocle-monocle_genelist_T1T2T3_T4T5_res.1.5')
plot_cell_trajectory(cds, color_by='timepoint')

Version Author Date
6030229 Pytrik Folkertsma 2019-04-03
4d2bbec Pytrik Folkertsma 2019-03-29

DE genes between brown and white.

cds_type <- readRDS('output/monocle/180831/monocle_type/10x-180831-monocle')
plot_cell_trajectory(cds_type, color_by='timepoint')

Version Author Date
6030229 Pytrik Folkertsma 2019-04-03

DE genes between top10% lowest PC2 score and top10% highest PC2 score.

cds_pc2 <- readRDS('output/monocle/180831/monocle_PC2/10x-180831-monocle')
plot_grid(
  plot_cell_trajectory(cds_pc2, color_by='timepoint'),
  plot_cell_trajectory(cds_pc2, color_by='State.old') + scale_color_manual(values=c("#f67770", "#964B00", "orange"), name = "State"),
  plot_cell_trajectory(cds_pc2, color_by='Pseudotime'),
  plot_cell_trajectory(cds_pc2, color_by='State'),
  ncol=2
)

Version Author Date
4d2bbec Pytrik Folkertsma 2019-03-29


sessionInfo()
R version 3.5.3 (2019-03-11)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Storage

Matrix products: default
BLAS/LAPACK: /usr/lib64/libopenblas-r0.3.3.so

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

attached base packages:
 [1] splines   stats4    parallel  stats     graphics  grDevices utils    
 [8] datasets  methods   base     

other attached packages:
[1] cowplot_0.9.4       monocle_2.8.0       DDRTree_0.1.5      
[4] irlba_2.3.3         VGAM_1.1-1          ggplot2_3.1.0      
[7] Biobase_2.42.0      BiocGenerics_0.28.0 Matrix_1.2-17      

loaded via a namespace (and not attached):
 [1] ggrepel_0.8.0          Rcpp_1.0.1             lattice_0.20-38       
 [4] FNN_1.1.3              assertthat_0.2.1       rprojroot_1.3-2       
 [7] digest_0.6.18          slam_0.1-45            R6_2.4.0              
[10] plyr_1.8.4             backports_1.1.3        qlcMatrix_0.9.7       
[13] sparsesvd_0.1-4        evaluate_0.13          pillar_1.3.1          
[16] rlang_0.3.2            lazyeval_0.2.2         whisker_0.3-2         
[19] combinat_0.0-8         rmarkdown_1.12         labeling_0.3          
[22] Rtsne_0.15             stringr_1.4.0          igraph_1.2.4          
[25] pheatmap_1.0.12        munsell_0.5.0          compiler_3.5.3        
[28] xfun_0.5               pkgconfig_2.0.2        htmltools_0.3.6       
[31] tidyselect_0.2.5       tibble_2.1.1           gridExtra_2.3         
[34] RANN_2.6.1             workflowr_1.2.0        matrixStats_0.54.0    
[37] viridisLite_0.3.0      crayon_1.3.4           dplyr_0.8.0.1         
[40] withr_2.1.2            grid_3.5.3             densityClust_0.3      
[43] gtable_0.3.0           git2r_0.25.2           magrittr_1.5          
[46] scales_1.0.0           docopt_0.6.1           stringi_1.4.3         
[49] reshape2_1.4.3         viridis_0.5.1          fs_1.2.7              
[52] limma_3.36.5           fastICA_1.2-1          RColorBrewer_1.1-2    
[55] tools_3.5.3            glue_1.3.1             purrr_0.3.2           
[58] HSMMSingleCell_0.114.0 yaml_2.2.0             colorspace_1.4-1      
[61] cluster_2.0.7-1        knitr_1.22